Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
biorxiv; 2022.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2022.03.18.484956

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a {beta}-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. Here, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including primary AECs in air-liquid interface (ALI) culture. Gal-9 promotes SARS-CoV-2 attachment and entry into AECs in an ACE2-dependent manner, enhancing the binding affinity of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs including the IL-6, IL-8, IL-17, EIF2, and TNF signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.


Asunto(s)
COVID-19
2.
authorea preprints; 2021.
Preprint en Inglés | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.161368477.78159414.v1

RESUMEN

COVID-19 can present with lymphopenia and extraordinary complex multi-organ pathologies that can trigger long-term sequela. Given that inflammasome products, like caspase-1, play a role in the pathophysiology of a number of co-morbid conditions, we investigated caspases across the spectrum of COVID-19 disease. We assessed transcriptional states of multiple caspases and using flow cytometry, the expression of active caspase-1 in blood cells from COVID-19 patients in acute and convalescent stages of disease. Non-COVID-19 subjects presenting with various co-morbid conditions served as controls. Single-cell RNA-seq data of immune cells from COVID-19 patients showed a distinct caspase expression pattern in T cells, neutrophils, dendritic cells and eosinophils compared to controls. Caspase-1 was upregulated in CD4+ T-cells from hospitalized COVID-19 patients compared to unexposed controls. Post-COVID-19 patients with lingering symptoms (long-haulers) also showed up-regulated caspase-1 activity in CD4+ T-cells that ex vivo was attenuated with a select pan-caspase inhibitor. We observed elevated caspase-3/7 levels in red blood cells from COVID-19 patients compared to controls that was reduced following caspase inhibition. Our preliminary results suggest an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Further clinical correlations of caspase expression in different stages of COVID-19 will be needed. Pan-caspase inhibition could emerge as a therapeutic strategy to ameliorate or prevent severe COVID-19.


Asunto(s)
COVID-19 , Linfopenia
3.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.11.02.20223636

RESUMEN

At present, there are is no effective vaccine and only one FDA approved early-stage therapy against infection with the SARS-CoV-2 virus to prevent disease progression. The excessive inflammation and tissue damage associated with COVID-19 can lead to immediate (i.e. respiratory failure, sepsis, and ultimately, death) or long-term health problems (i.e. fatigue, dyspnea, cough, joint pain, anosmia) and the risk for these complications are higher in the elderly population, certain ethnic groups, as well as those with various co-morbid conditions. Cellular caspases play a role in the pathophysiology of a number of disorders that overlap with the list of co-morbid conditions seen in severe COVID-19. In this study, we assessed transcriptional states of caspases in immune cells from COVID-19 patients and profiled intra-cellular caspases in immune cells and red blood cells derived from a spectrum of COVID-19 patients hospitalized with acute disease or convalescent. Gene expression levels of select caspases were increased in in vitro SARS-CoV-2 infection models and single cell RNA-Seq data of peripheral blood from COVID-19 patients showed a distinct pattern of caspase expression in T cell, neutrophils, and dendritic cells. Flow cytometric evaluation of CD4 T cells showed up-regulation of caspase-1 in hospitalized COVID-19 patients compared to unexposed controls, with the exception of a subset of patients with asthma and chronic rhinosinusitis (CRS). Convalescent COVID-19 patients with lingering symptoms (long haulers) showed persistent up-regulation of caspase-1 in CD4 T cells that was attenuated ex vivo following co-culture with a select pan-caspase inhibitor. Further, we observed elevated caspase 3 levels in red blood cells from COVID-19 patients compared to controls that were responsive to caspase inhibition. Taken together, our results expose an exuberant caspase response in COVID-19 that may facilitate immune-related pathological processes leading to severe outcomes. Pan-caspase inhibition could emerge as a therapeutic strategy to ameliorate, reduce, or prevent severe COVID-19 outcomes.


Asunto(s)
Enfermedad Aguda , Fatiga , Disnea , Sepsis , Artralgia , Asma , Trastornos del Olfato , Enfermedad Crónica , Muerte , COVID-19 , Inflamación , Insuficiencia Respiratoria
4.
biorxiv; 2020.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2020.05.21.109124

RESUMEN

Immune dysregulation and cytokine release syndrome have emerged as pathological hallmarks of severe Coronavirus Disease 2019 (COVID-19), leading to the evaluation of cytokine antagonists as therapeutic agents. A number of immune-directed therapies being considered for COVID-19 patients are already in clinical use in chronic inflammatory conditions like inflammatory bowel disease (IBD). These considerations led us to systematically examine the intersections between COVID-19 and the GI tract during health and intestinal inflammation. We have observed that IBD medications, both biologic and non-biologic, do not significantly impact ACE2 and TMPRSS2 expression in the uninflamed intestines. Additionally, by comparing SARS CoV2-induced epithelial gene signatures with IBD-associated genes, we have identified a shared molecular subnetwork between COVID-19 and IBD. These data generate a novel appreciation of the confluence of COVID-19- and IBD-associated inflammation and provide mechanistic insights supporting further investigation of specific IBD drugs in the treatment of COVID-19.


Asunto(s)
COVID-19 , Trastornos Cronobiológicos , Inflamación , Enfermedades Gastrointestinales , Enfermedades Inflamatorias del Intestino
5.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.05.02.20084673

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is now pandemic with nearly three million cases reported to date. Although the majority of COVID-19 patients experience only mild or moderate symptoms, a subset will progress to severe disease with pneumonia and acute respiratory distress syndrome (ARDS) requiring mechanical ventilation. Emerging results indicate a dysregulated immune response characterized by runaway inflammation, including cytokine release syndrome (CRS), as the major driver of pathology in severe COVID-19. With no treatments currently approved for COVID-19, therapeutics to prevent or treat the excessive inflammation in severe disease caused by SARS-CoV-2 infection are urgently needed. Here, in 10 terminally-ill, critical COVID-19 patients we report profound elevation of plasma IL-6 and CCL5 (RANTES), decreased CD8+ T cell levels, and SARS-CoV-2 plasma viremia. Following compassionate care treatment with the CCR5 blocking antibody leronlimab, we observed complete CCR5 receptor occupancy on macrophage and T cells, rapid reduction of plasma IL-6, restoration of the CD4/CD8 ratio, and a significant decrease in SARS-CoV-2 plasma viremia. Consistent with reduction of plasma IL-6, single-cell RNA-sequencing revealed declines in transcriptomic myeloid cell clusters expressing IL-6 and interferon-related genes. These results demonstrate a novel approach to resolving unchecked inflammation, restoring immunologic deficiencies, and reducing SARS-CoV-2 plasma viral load via disruption of the CCL5-CCR5 axis, and support randomized clinical trials to assess clinical efficacy of leronlimab-mediated inhibition of CCR5 for COVID-19.


Asunto(s)
Síndrome de Dificultad Respiratoria , Enfermedad Pulmonar Obstructiva Crónica , Neumonía , Síndrome Respiratorio Agudo Grave , COVID-19 , Síndromes de Inmunodeficiencia , Trastornos Cronobiológicos , Inflamación
6.
researchsquare; 2020.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-26517.v1

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), is now pandemic with nearly three million cases reported to date1. Although the majority of COVID-19 patients experience only mild or moderate symptoms, a subset will progress to severe disease with pneumonia and acute respiratory distress syndrome (ARDS) requiring mechanical ventilation2. Emerging results indicate a dysregulated immune response characterized by runaway inflammation, including cytokine release syndrome (CRS), as the major driver of pathology in severe COVID-193,4. With no treatments currently approved for COVID-19, therapeutics to prevent or treat the excessive inflammation in severe disease caused by SARS-CoV-2 infection are urgently needed. Here, in 10 terminally-ill, critical COVID-19 patients we report profound elevation of plasma IL-6 and CCL5 (RANTES), decreased CD8+ T cell levels, and SARS-CoV-2 plasma viremia. Following compassionate care treatment with the CCR5 blocking antibody leronlimab, we observed complete CCR5 receptor occupancy on macrophage and T cells, rapid reduction of plasma IL-6, restoration of the CD4/CD8 ratio, and a significant decrease in SARS-CoV-2 plasma viremia. Consistent with reduction of plasma IL-6, single-cell RNA-sequencing revealed declines in transcriptomic myeloid cell clusters expressing IL-6 and interferon-related genes. These results demonstrate a novel approach to resolving unchecked inflammation, restoring immunologic deficiencies, and reducing SARS-CoV-2 plasma viral load via disruption of the CCL5-CCR5 axis, and support randomized clinical trials to assess clinical efficacy of leronlimab-mediated inhibition of CCR5 for COVID-19.


Asunto(s)
Síndrome de Dificultad Respiratoria , Enfermedad Pulmonar Obstructiva Crónica , Neumonía , Síndrome Respiratorio Agudo Grave , COVID-19 , Síndromes de Inmunodeficiencia , Trastornos Cronobiológicos , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA